Ma YEAR

5-7

PAPER 1

Year 8 mathematics test

Paper 1

Calculator **not** allowed

Please read this page, but do not open your booklet until your teacher tells you to start. Write your details in the spaces below.

First name	
Last name	
Class	
Date	

Remember

- The test is 1 hour long.
- You must not use a calculator for any question in this test.
- You will need: pen, pencil, rubber, ruler, a pair of compasses and tracing paper (optional).
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marking	Total marks	
use only	lotal marks	

Instructions

Answers

This means write down your answer or show your working and write down your answer.

Calculators

You **must not** use a calculator to answer any question in this test.

Formulae

You might need to use these formulae.

Trapezium

Area =
$$\frac{1}{2}(a+b)h$$

Prism

Volume = area of cross-section \times length

Look at these number cards.

(a) Choose any two of the number cards that add to 2

. . . . 1 mark

(b) Choose any three of the number cards that add to -5

1 mark

(c) Choose any four of the number cards that add to 0

. 1 mark

Dave and Steve are in a high jump competition.

Dave jumps $1\frac{1}{4}$ metres.

Steve jumps 1.4 metres.

Who jumps higher? Tick (✓) Dave or Steve.

Dave

How much higher does he jump?

Give your answer in metres.

metres

. 2 marks

Fill in the gaps to show what the units measure.

The first one is done for you.

	centimetres measurelength	
	kilograms measure	
	litres measure	
s	square metres measure	

4

When n is **5**, work out the value of 2(n + 1)

. 1 mark

		Mean
5 (a)	Here are three numbers.	
	4 8 9	
	Show that the mean of these three numbers is 7	

		1 mark
(b)	The mean of three numbers is 5	
	One of these numbers is 2	
	What could the other numbers be?	
	Write them on the cards below.	
	2	 1 mark
	What else could the numbers be?	
	Use different numbers from your answer above.	
	Write them on the cards below.	
	2	 1 mark

6 (a) Use a ruler and compasses to draw a triangle that has these side lengths:

5cm, 5cm, 8cm

. . . .

2 marks

(b) Sally says it is possible to draw a triangle with these side lengths:

5cm, 5cm, 12cm

Is she correct? Tick (✓) Yes or No.

Yes

No

Explain how you know.

. . . . 1 mark

2 marks

A petrol station shows this information:

10 litres = 2.2 gallons

How many gallons is 50 litres?

..... gallons

The diagram shows four identical white rectangles around a shaded square.

Not drawn accurately

What is the area of the shaded square?

3 marks

9 I think of a number.

4% of my number is **42**

(a) What is 40% of my number?

. 1 mark

(b) What is my number?

. . . . 1 mark 10 (a) Write the missing decimal so that each pair adds to 1 The first one is done for you.

$$\boxed{ \frac{3}{10} } \quad + \quad \boxed{ } \qquad = \quad 1$$

(b) Write the missing fraction so that the pair below adds to 1 Write the fraction as simply as possible.

2 marks

1 mark

Here is a sequence of patterns made from hexagons and triangles.

The sequence of patterns continues.

(a) In **pattern number 90**, how many hexagons and how many triangles will there be?

(b) In which pattern will there be 100 triangles?

12

The diagram shows a kite drawn on a square grid.

Draw **five more** of these kites to show how they tessellate.

Use the expressions on cards P, Q, R, S and T to answer the questions below.

$$3a + 1$$

$$2(a-1)$$

$$a^2 - 2$$

$$(a + 1)^2$$

card P

card Q

card R

card T

(a) When a = 3, which card has the **highest value**?

1 mark

(b) When a = -3, which card has the **highest value**?

1 mark

(c) Which card's value is **never negative** whatever the value of a?

card

1 mark

Look at the information in the box.

$$\frac{16}{80}$$
 = 20%

The information can help you work out other number facts. Fill in the missing numbers below.

$$\frac{32}{160} = \boxed{ }$$
%

1 mark

. 1 mark

The graph shows square ABCD.

The equation of the straight line through $\bf C$ and $\bf D$ is x=7

(a) What is the equation of the straight line through **B** and **C**?

. . . . 1 mark

(b) What is the equation of the straight line through **B** and **D**?

1 mark

The pupils in a class recorded the length of time they took to do their maths homework.

The stem-and-leaf diagram shows the results, in minutes.

There are 25 pupils in the class.

1	8	9							
2	1	2	3	3	6	6	6	6	7
3	8 1 0 0	2	3	5	8	9			
4	0	2	4	5	5	7			
5	0	4							

1 8 means 18 minutes

(a) The shortest time was 18 minutes.

What was the longest time?

(b) What length of time was the **mode**?

(c) What length of time was the median?

Fill in the missing powers.

The first one is done for you.

$$8 \times 7 \times 7 = 8 \times 7$$

1 mark

$$\frac{3 \times 12^6}{12^2} = 3 \times 12$$

A triangle has three sides that are 13 cm, y + 8 cm and 3y + 1 cm long.

The triangle is **isosceles**.

What could the lengths of the sides be?

There are three different answers.

Write all three answers.

First answer:	cm	cm	 cm	
Second answer:	cm	cm	 cm	
Third answer:	cm	cm	 cm 3 mark	ks

(a) The height of a cuboid is 4cm.

The volume of the cuboid is 100 cm³ What is the area of the shaded face?

1 mark

(b) The volume of another cuboid is 100 cm³ None of its dimensions is 4cm.

What could the dimensions of this cuboid be?

(c) A prism has a cross-section that is a right-angled triangle.

Its volume is 100cm³

Not drawn accurately

What could the dimensions of this prism be?

1 mark

A teacher tells her pupils:

Think of a whole number between 1 and 10

Multiply your number by 9, then

add the digits together, then

subtract 5

Use the code A = 1, B = 2, etc. to change your answer to a letter.

Think of a country beginning with your letter.

The teacher tells the pupils that they are thinking of Denmark and they are amazed.

Give a mathematical reason to show why this trick works.

Asha uses a graphic calculator to draw the graph of y = x + 1

Then she enters the equation of another line.

This new line is **parallel** to the line y = x + 1

(a) Which equation below is the equation of the new line? Put a ring round the correct answer.

$$y = 3x + 1$$

$$y = x + 3$$

$$3y = x + 1$$

$$y = 3x + 1$$
 $y = x + 3$ $3y = x + 1$ $y = 3x + 3$

1 mark

(b) Then Asha enters the equation of a different line.

This line is **parallel** to the x-axis.

What is the equation of this line?

Two travel agents offer a week in Spain for the same original price.

'Sun' travel agent

Week in Spain

Book early and get **20% off** original price

'Relax' travel agent

Week in Spain

Book early and get **25% off** original price

Jane and Rosa both book early for this holiday.

Jane uses 'Sun' travel agent. Rosa uses 'Relax' travel agent.

Jane pays £16 more than Rosa.

What was the original price of the holiday?

£

I have two fair dice, each numbered 1 to 6 I am going to throw the two dice.

What is the probability that the **sum** of the numbers on the dice will be a **square number**?

. 2 marks

(a) Look at this inequality.

$$y + 2 < 3$$

Which values of y below make the inequality true?

Tick (✓) all correct values.

1 mark

(b) Now look at this inequality.

$$y + 2 < 3y$$

Which values of y below make the inequality true?

Tick (✓) all correct values.

1 mark

(c) James says:

'I can think of a value of y that makes both inequalities true'.

Show that James is wrong.

1 mark

BLANK PAGE

BLANK PAGE

© Qualifications and Curriculum Authority 2004 QCA, Years 7 and 8 Team, 83 Piccadilly, London W1J 8QA

Order refs:

QCA/04/1164 (pupil pack) QCA/04/1161 (teacher pack)